Macrophage MMP-9 Accelerates Cardiac Aging

Is macrophage MMP-9 a prime upstream regulator of cardiac aging? Yes, according to new research by Toba et al, explored in our latest podcast. Editor in Chief Irving H. Zucker (University of Nebraska Medical Center) interviews lead author and Deputy Editor Merry Lindsey (University of Mississippi Medical Center) and content expert Richard Gumina (Vanderbilt University) about the work by Lindsey and colleagues, which expands our knowledge of macrophage MMP-9 overexpression and its amplification of the myocyte hypertrophic response to aging. Did Lindsey and co-authors find in their experimental model that diastolic cardiac physiology was impaired before systolic cardiac physiology? MMP-9 appears to be a driver of inflammation, rather than a consequence of inflammation. Does MMP-9 in the aged heart also play a pro-fibrogenic role? Listen and learn more.

 

Hiroe Toba, Presley L. Cannon, Andriy Yabluchanskiy, Rugmani Padmanabhan Iyer, Jeanine D’Armiento, Merry L. Lindsey Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis Am J Physiol Heart Circ Physiol, published March 1, 2017. DOI:10.1152/ajpheart.00633.2016

00:0000:00

Genes and Vascular Reactions to Diving

Is the vascular response in humans to the diving reflex genetically determined? In our first-ever podcast recorded in both Russian and English, Associate Editor Debra I. Diz (Wake Forest University School of Medicine) interviews lead author Tatiana I. Baranova (St.-Petersburg State University, Russia), her translator Vladimir Boykov, and content expert Charles E. Wood (University of Florida). Listen as we explore the work by Baranova and co-authors, which determined that polymorphisms in the bradykinin and renin-angiotensin systems are the driving force behind hemodynamic responses to the diving reflex. What is known about the functional implications of the mutations that affect the coding regions of the genes ADBR2, ACE, AGTR1, BDKRB2, and REN? Does this work on the genomics of hemodymic changes during transient hypoxia have potential therapeutic applications in personalized medicine? Listen to find out.

 

Tatiana I. Baranova, Dmitrii N. Berlov, Oleg S. Glotov, Ekaterina A. Korf, Alexey D. Minigalin, Alla V. Mitrofanova, Ildus I Ahmetov, Andrey S. Glotov Genetic determination of the vascular reactions in humans in response to the diving reflex Am J Physiol Heart Circ Physiol, published online December 6, 2016. DOI: 10.1152/ajpheart.00080.2016

00:0000:00