Resveratrol and Exercise Capacity in Heart Failure

Does resveratrol positively impact exercise intolerance in heart failure patients? Listen as Associate Editor Christine Des Rosiers (Universite de Montreal) interviews lead author Jason Dyck (University of Alberta) and content expert Yan Burelle (University of Ottawa) about the exciting new study by Sung et al, which used a mouse model of heart failure to determine if treatment with resveratrol restored exercise tolerance to normal levels. Dyck and co-authors clearly show that resveratrol is effective as a treatment for exercise intolerance in heart failure, not solely as a preventative strategy, and this may have important clinical implications for human heart failure patients. What role does the gut microbiome play in this resveratrol treatment study, and what cautionary words do these experts have about equating nutraceutical resveratrol treatment with the naturally occurring polyphenol resveratrol commonly found in red wine? Listen and find out.

 

Miranda M. Sung, Nikole J Byrne, Ian M Robertson, Ty T Kim, Victor Samokhvalov, Jody Levasseur, Carrie-Lynn M Soltys, David Fung, Neil Tyreman, Emmanuel Denou, Kelvin Jones, John M Seubert, Jonathan D. Schertzer, Jason R.B. Dyck Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure Am J Physiol Heart Circ Physiol, published April 1, 2017. DOI: 10.1152/ajpheart.00455.2016

00:0000:00

Exosomes in Pediatric Dilated Cardiomyopathy

Are circulating exosomes in serum derived from pediatric patients with dilated cardiomyopathy modulating the phenotype of cardiomyocytes and causing a pathological response in cells? Yes, according to a novel and technically-challenging in vitro study by Jiang et al. Listen as Guest Editor Sumanth Prabhu (University of Alabama at Birmingham) interviews lead author Carmen (Kika) Sucharov (University of Colorado Denver) and David D. Gutterman (Medical College of Wisconsin), content expert and Consulting Editor. Exosomes are small vesicles present in cells and released into the circulation carrying both coding and noncoding RNAs, as well as proteins and lipids. The study by Sucharov and co-authors seeks to further elucidate the unique features of the pathophysiology of heart failure in children. Does this study also provide a roadmap for future research into the “culprit component” of exosomes responsible for the phenotypic change shown in cardiomyocytes by the Sucharov lab? Listen and learn more.

 

Xuan Jiang, Juliana Sucharov, Brian L. Stauffer, Shelley D. Miyamoto, Carmen C. Sucharov Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes Am J Physiol Heart Circ Physiol, published April 1, 2017. DOI: 10.1152/ajpheart.00673.2016

00:0000:00

Exercise Averts High Pressure-Induced Vascular Dysfunction

Can chronic exercise prevent endothelial damage that occurs to the arterioles because of acute increases in arterial pressure? Consulting Editor David Gutterman (Medical College of Wisconsin) interviews lead author Austin Robinson (University of Delaware) and content expert Lisa Lesniewski (University of Utah) about this very question in our latest podcast. Using a unique animal model comparing sedentary mice to mice who voluntarily ran 6 km per day, Robinson and co-authors found that NADPH oxidase and angiotensin II were responsible for impaired flow-induced dilation following high pressure stress in arterioles removed from the “couch potato” mice but not in exercised mice. Why did the authors choose to study resistance artery function in subcutaneous adipose tissue, compared to visceral adipose tissue? What are the implications for maintaining cardiovascular fitness, and how long does a bout of exercise need to last to confer the vasculoprotective effects? Listen and find out.

 

Austin T. Robinson, Ibra S. Fancher, Varadarajan Sudhahar, Jing Tan Bian, Marc D. Cook, Abeer M. Mahmoud, Mohamed M. Ali, Masuko Ushio-Fukai, Michael D. Brown, Tohru Fukai, Shane A. Phillips Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature Am J Physiol Heart Circ Physiol, published May 1, 2017. DOI: 10.1152/ajpheart.00684.2016

00:0000:00