Dilated Cardiomyopathy Delta Sarcoglycan Mutations Cause Cardiomyocyte Membrane Instability

What is the link between mutations in delta sarcoglycans and dilated cardiomyopathy? In our latest podcast, Guest Editor Noah Weisleder (Ohio State University) interviews lead author Daniel Michele (University of Michigan) and content expert Aaron Beedle (University of Georgia) about this very question, digging deeper into the elegant study by Campbell et al which reveals that two different delta sarcoglycan mutations indeed have a dominant negative effect on myocyte membrane mechanical stability. Using a variety of experimental approaches—cellular, biochemical and functional assays—Dr. Michele and co-authors help to uncover the relationship between these genetic mutations and the presentation of the dilated cardiomyopathy phenotype. Learn more about how a personal connection to muscular dystrophy acted as a springboard for this study, part of our Call for Papers on Plasma Membrane Integrity in Cardiovascular Physiology and Pathophysiology. How do delta sarcoglycans guard against sarcolemma instability, and how does membrane repair differ from membrane integrity in dilated cardiomyopathy? Listen and find out.

Matthew D. Campbell, Marc Witcher, Anoop Gopal, Daniel E. Michele Dilated cardiomyopathy mutations in δ-sarcoglycan exert a dominant-negative effect on cardiac myocyte mechanical stability Am J Physiol Heart Circ Physiol, published May 1, 2016. DOI: 10.1152/ajpheart.00521.2015

Share | Download(Loading)