Guidelines for Measuring Sympathetic Nerve Activity

What are the best technological and methodological guidelines for measuring sympathetic nerve activity in humans and animals? In this *special edition* podcast, Editor in Chief Irving H. Zucker (University of Nebraska Medical Center) interviews lead authors, and leading experts, Nisha Charkoudian (U.S. Army Research Institute of Environmental Medicine), Jason Carter (Michigan Technological University), Geoffrey Head (Baker IDI Heart and Diabetes Institute), and John Osborn (University of Minnesota) about this comprehensive tour de force article of Guidelines in Cardiovascular Physiology by Hart et al. Bringing together nine global experts to collaborate and build a consensus on best practices for measuring SNA took over a year to accomplish, and the Editors of AJP-Heart and Circ are both exceptionally grateful to the authors and proud to publish this guidelines article –the first of its kind for the journal! Listen as Jason Carter and Nisha Charkoudian discuss human microneurography, the main validation techniques and the potential pitfalls to recording multi-unit and single unit activity. Continue listening as John Osborn and Geoff Head discuss optimal sympathetic recording techniques in experimental animals, the “do’s and don’ts” of recording SNA in conscious animals, surgical techniques needed, and avoiding artifactual data. This conversation is unlike any other podcast in cardiovascular journals. Don’t miss the opportunity to hear these experts discuss their work, their collaboration, and the net result—comprehensive guidelines for measuring sympathetic nerve activity. Listen now.

 

Emma C. J. Hart, Geoffrey A Head, Jason R. Carter, Gunnar Wallin, Clive N May, Shereen M Hamza, John E. Hall, Nisha Charkoudian, John W. Osborn Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization Am J Physiol Heart Circ Physiol, published March 31, 2017. DOI: 10.1152/ajpheart.00703.2016

00:0000:00
Share | Download(Loading)