Heart Failure Alters Synaptic Input in Cardiac Vagal Neurons

Is a reduction in parasympathetic activity the “canary in the coal mine” at the onset of many cardiovascular diseases, such as hypertension and heart failure? Listen as Associate Editor Kaushik Patel (University of Nebraska Medical Center) interviews lead author David Mendelowitz (George Washington University) and content expert Helio Salgado (University of São Paulo) about why Cauley et al set out to understand what changes cardiac vagal activity at the level of the brainstem using an aortic constriction model of heart failure. While much is known about alterations in sympathetic nerve activity, the knowledge of parasympathetic activity is still in its infancy. Could leveraging the diverse populations of neurons within the paraventricular nucleus of the hypothalamus provide a mechanism to alter the sympathetic-parasympathetic balance? Would stimulating parasympathetic activity, either at the level of the ganglia or brainstem, provide cardioprotective benefits in cardiovascular diseases, such as hypertension and heart failure? Listen to find out.

Edmund Cauley, Xin Wang, Jhansi Dyavanapalli, Ke Sun, Kara Garrott, Sarah Kuzmiak-Glancy, Matthew W Kay, David Mendelowitz Neurotransmission to Parasympathetic Cardiac Vagal Neurons in the Brainstem is Altered With Left Ventricular Hypertrophy Induced Heart Failure Am J Physiol Heart Circ Physiol, published September 14, 2015, DOI: 10.1152/ajpheart.00445.2015.

Share | Download(Loading)

Episodes Date

Load more

Play this podcast on Podbean App